Permanent-magnet (PM) Stepper Motors
Figure 1-2 Components of a PM stepper motor: (a) Rotor; (b) stator
When a PM stepper motor has a steady DC signal applied to one stator winding, the rotor will overcome the residual torque and line up with that stator field. The holding torque is defined as the amount of torque required to move the rotor one full step with the stator energized. An important characteristic of the PM stepper motor is that it can maintain the holding torque indefinitely when the rotor is stopped. When no power is applied to the windings, a small magnetic force is developed between the permanent magnet and the stator. This magnetic force is called a residual, or detent torque. The detent torque can be noticed by turning a stepper motor by hand and is generally about one-tenth of the holding torque. Figure 1-3(a) shows a permanent magnet stepper motor with four stator windings. By pulsing the stator coils in a desired sequence, it is possible to control the speed and direction of the motor. Figure 1-3(b) shows the timing diagram for the pulses required to rotate the PM stepper motor illustrated in Figure 1-3(a). This sequence of positive and negative pulses causes the motor shaft to rotate counterclockwise in 90° steps. The waveforms of Figure 1-3(c) illustrate how the pulses can be overlapped and the motor made to rotate counterclockwise at 45° intervals.
Figure 1-3 (a) PM stepper motor; (b) 90 step; (c) 45 step.A more recent development in PM stepper motor technology is the thin-disk rotor. This type of stepper motor dissipates much less power in losses such as heat than the cylindrical rotor and as a result, it is considerably more efficient. Efficiency is a primary concern in industrial circuits such as robotics, because a highly efficient motor will run cooler and produce more torque or speed for its size. Thin-disk rotor PM stepper motors are also capable of producing almost double the steps per second of a conventional PM stepper motor. Figure 1-4 shows the basic construction of a thin-disk rotor PM motor. The rotor is constructed of a special type of cobalt-steel, and the stator poles are offset by one-half a rotor segment.
Figure 1-4 thin-disk rotor PM stepper motor.(*Source - http://zone.ni.com/devzone)
1 comment:
I need a stepper motor that would turn 45 degrees every 24 hours. It needs to be able to move a disk that weights around 8 pounds. It could be electric or battery operated.
Please advice of options
Thanks,
Post a Comment